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The effect of entrained air in violent 
water wave impacts 

By D. H. PEREGRINE AND L. THAIS 
School of Mathematics, University of Bristol, Bristol BS8 lTW, UK 
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The effects of entrained air in cushioning water impact on a wall are estimated by 
using a flow which has many similarities to the severe flip-through impacts that 
have been identified for water waves hitting a vertical wall. This is a filling flow 
which rapidly fills a confined region, such as a crack between blocks, or the space 
beneath a deck projecting from the coast (Peregrine & Kalliadasis 1996). The main 
properties of the filling flow are easily calculated, including the high-pressure peak 
which corresponds to the pressure peak of a flip-through. This work extends the 
study of filling flows to the case where the filling liquid is an air-water mixture, thus 
giving explicit results for the reduction of peak pressure due to the compressibility 
of entrained air. The behaviour of a bubbly liquid subject to substantial pressure 
changes is considered. Expressions are derived for an air-water mixture treated as a 
compressible fluid. The reduction in pressure from the incompressible case is found 
to be large even for relatively small air content, and depends more on the reduction 
in fluid volume than any other feature of the pressure-density relation. Results are 
presented in such a way that they may be used to estimate compressibility corrections 
to both the maximum and background pressures in a flip-through wave impact if 
corresponding incompressible pressure values are available. 

1. Introduction 
In the study of the impact of water waves there has long been a problem in scaling 

experimental data from laboratory to prototype scales. The natural choice is Froude 
scaling, since the incident waves are surface gravity waves : however, this choice gives 
unrealistically large prototype forces. The severity of the pressures and short time 
scales of the motion lead to the view that compressibility becomes important within 
large ocean waves. This view is strengthened by the fact that in most practical 
cases of severe impact there is substantial mixing of air and water, and once water 
has entrained air, even small volume fractions give greatly increased compressibility. 
Experimental evidence includes pressure oscillations recorded on sea walls or in the 
laboratory, where the compressibility of the fluid is mainly attributed to the presence of 
air in the water (e.g. Hattori & Arami 1992; Schmidt, Oumeraci & Partenscky 1992). 

There are two obvious ways in which air cushions wave impact. One is when a 
pocket of air is trapped and effectively spreads the impact pressure in both space and 
time. The trapping of air in this manner and the resulting effect on the pressures, 
especially the way in which they oscillate due to volume changes of the trapped air 
pocket is the topic of the theoretical studies by Bagnold (1939), Ramkema (1978), 
Peregrine (1994), Topliss, Cooker & Peregrine (1992), Topliss (1994), Peregrine & 



378 D. H .  Peregrine and L. Thais 

Topliss (1994), and Zhang, Yue & Tanizawa (1996). If no air is trapped very 
high pressures are generated in the flip-through motion identified by Cooker & Pere- 
grine (1990a,b, 1992, 1996). In flip-through the wave actually does not hit the wall but 
shoots up without trapping any air bubble. Then the second way in which air might 
cushion an impact becomes important. That is by its entrainment and suspension 
as small bubbles in the water. This is especially relevant to coastal situations since 
the general size of bubbles in salt water is very much smaller than in fresh water 
and in an environment where waves are frequently breaking the volume fraction of 
air is likely to be over 1%. Since the most violent impacts appear to be due to 
flip-through, or when a trapped air pocket is particularly small, it is desirable to 
assess how compressibility of the fluid affects flip-through. 

Once compressibility of the fluid is taken into account simplifications that allow 
computation with Laplace's equation are no longer applicable. However, Peregrine & 
Kalliadasis (1996, referred to as PK hereafter) have discovered a flow which has many 
similarities to the flow in a flip-through wave impact at the time of maximum pressure. 
This is a flow rapidly filling a confined region, such as a crack between blocks, or the 
space beneath a deck projecting from the coast. The main properties of the filling 
flow are easily calculated, including the high-pressure peak which corresponds to the 
pressure peak of a flip-through. This work extends the study of filling flows to the 
case where the filling liquid is an air-water mixture, thus giving explicit results for the 
reduction of peak pressure due to the compressibility of entrained air. Most previous 
studies on the compressibility of bubbly liquids on wave impact have only considered 
the acoustic regime where small pressure departures from equilibrium are allowed. 
Here the behaviour of a bubbly liquid subject to substantial pressure changes is 
considered. 

In $2 we give a brief review of the incompressible filling flow of PK. In $3 we analyse 
the compressible version of the same flow. The compressibility effects are modelled by 
assuming that incompressible water contains an incoming volume fraction, 81, of air 
dispersed in homogeneously distributed small bubbles. The equation of state for the 
bubbly mixture is discussed and the integral in Bernoulli's equation evaluated. The 
results, presented in $4, show how the air significantly reduces the pressures in the 
flow. The pressure reductions depend on the inflow Mach number and the severity 
of the corresponding incompressible flow. An approximate solution is derived that 
gives the quantities of importance in the flow, namely the background and maximum 
pressures, in a surprisingly simple manner. The approximation also shows that the 
major cause of the cushioning of high pressures by the dispersed air is the volume 
reduction at high pressures. This reduces the speed of filling, which in turn leads to 
lower pressures. The analogy with flip-through that stimulated discovery of the filling 
flow is used to provide guidance for compressibility corrections to incompressible 
estimates of pressures imposed by water wave impacts. The corrections for maximum 
pressures differ from those for the background pressure found below the point of 
peak pressure on a wall. The discussion in $5 gives an example of a comparison with 
flip-through pressures, and guidance on how to use the results of the previous section. 
Section 6 gives a brief discussion of the supersonic flow and shock wave that could 
result from wave impact. 

2. Incompressible filling flow 
The filling flow defined by PK describes an incoming flow of height h, velocity V,  

horizontally entering and rapidly filling a container of height H .  The container is 
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FIGURE 1. Configuration of the filling flow: (a) in the stationary frame of reference, (b)  in the 
moving frame of reference (free-surface profiles are plotted for examples of the incompressible flow, 
k = 0.684, e = 0.532, see PK). 

being filled with a velocity U ,  and there is a thin backflow at the top with velocity 
V2 and thickness d, see figure l (a ) .  This flow may occur where a water wave enters 
beneath a horizontal coastal structure or into a crack in a cliff and henceforth rapidly 
fills up the available space. The case where h / H  is almost 1 and hence U is large 
is of special interest because of the high pressures generated. This flow is related to 
flip-through by an observation of Cooker that at the time of peak pressure in a flip- 
through the flow is forming a jet and the pressure peak moves with almost constant 
velocity giving a quasi-steady behaviour (Cooker & Peregrine 1996). Accordingly, the 
filling flow is considered to be steady in the reference frame moving with velocity 
U from left to right; the velocity at the far end of the already-filled portion of the 
container is then no longer zero but U from right to left, see figure l(b). Thus the 
flow divides and the pressure is maximum at the stagnation point, 0, in the moving 
reference frame. 

PK show that little algebra is required to solve for the global properties of the 
incompressible flow. This is achieved by writing two kinematic conditions, a mass- 
conservation equation, a momentum-flux equation and Bernoulli’s equation, see equa- 
tions (1) to (4) in PK. With the further assumption that gravity may be neglected in 
the especially violent motions PK gives the following expressions for the maximum 
pressure pk) ,  the background, or filling, pressure in the portion of the space already 
filled, p “ ) ,  and the width of the small outward-flowing jet, x(’) = d / H ,  where the 
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( 2 . 1 ~ )  

(2.lb) 

x(i) = (1 - k)2, (2.lc) 

where k = ( h / H ) ' / 2  is the square root of the fraction of the cross-section of the 
container being filled by the incoming jet. The pressures are normalized with iplV;, 
where pl denotes density of water. When k is close to 1 both pressures ~ ( ~ 1  and p;) 
become large. For example when the inward jet occupies 81% of the container height, 
H ,  it induces a background pressure of 9 and a maximum pressure of 25 at the point 
0, whereas the outward jet thickness is only 1% of the container height. 

3. Filling flow with entrained air 
3.1. Basic assumptions 

We now turn to the generalization of the conservation equations for the case of 
a compressible air-water mixture. We keep the assumption that the pressure is 
constant along the free streamline. Since gravity is neglected for the violent flows 
we are interested in, the velocity is a constant VO along the free steamline in the 
moving reference frame, just as for the incompressible flow. PK have shown that this 
assumption is appropriate for Froude numbers 9, = VI/ (gH) ' I2  of order or larger 
than 1, and we expect this to hold for the compressible flow. Thus, the kinematic 
relations of relative velocity 

vo = v1 + u, 
vo = v2 - u 

( 3 . 1 ~ )  
(3.lb) 

hold at the two extremes of the free streamline. 
At this stage it is necessary to make assumptions concerning the behaviour of 

the bubbly liquid. Most studies of compressibility of gas-liquid mixtures have been 
concerned with the propagation of small-amplitude disturbances. Sangani (1993) 
gives a recent review and stresses the influence of bubble interactions on the sound 
speed. A first integral of the motion has been established for potential flows of bubbly 
liquids in simple geometries (Wallis (1991)). The propagation of waves of moderate 
amplitude and the occurrence of shocks in one-dimensional bubbly flows have also 
been studied (e.g. van Wijngaarden 1980; Watanabe & Prosperetti 1994). Here there 
is a need to evaluate the effect of possibly large pressure changes in inhomogeneous 
two-dimensional bubbly flows. Since no simple approach seems possible in such 
configurations we resort to the crude assumption that the mixture behaves as a 
compressible fluid. The drastic assumption of no added-mass effect seems reasonable 
in the far end of the container and the incoming jet but is questionable around the 
stagnation point, 0, where the existence of strong pressure gradients may induce high 
flow inhomogeneity. With the mass fraction of each constituent unchanged it might 
be expected that compressibility effects are most significant in that region of high 
pressure. However, subsequent results ($3.6) show that air is virtually eliminated in 
regions of high pressure so there is probably little error on this account. 
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3.2. Conservation of mass and momentum JEux 
Our basic assumption is that of no 'slip' velocity or relative translational movement 
between the phases. Therefore there is no dissipation caused by relative motion 
between the liquid and the bubbles and the mass flux of gas in a unit mass flux of 
the mixture is constant. With this assumption and using (3.1) it is straightforward 
to write equations for conservation of mass and momentum flux for a compressible 
mixture. Denoting by p1 the density of the incoming mixture and by p its density in 
the far end of the container (see figure lb), we have in dimensional form, 
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PUH = P1Vo(h-d), (3.2) 

(3.3) 

for mass conservation, and 

(PU* + P - P1) H = PlV,Z(h + d ) ,  

for momentum flux, where P1 is the reference pressure (atmospheric pressure) in 
the incoming and outgoing mixture. In PK the pressure P1 was ignored and results 
given as over pressures with respect to a zero pressure reference. Here, as in any 
compressible flow, P1 is a central parameter. In (3.2) and (3.3) the densities p1 and p 
may be expressed as the gas volume fraction weighted average of the gas and liquid 
densities, pg and pI,  respectively: 

(3.4a) 
(3.4b) 

The subscript 1 always refers to standard conditions in the incoming jet. In equations 
(3.4a,b) we have assumed that the motion is violent but not so violent that we 
should allow for the compressibility of the water. Thus the liquid phase is taken as 
incompressible. The next approximation is to neglect the gas density compared to the 
liquid density, namely 

(3.5a) 
(3.5b) 

This is an excellent approximation for the air-water system for pressures up to 
10 bar, and even over this limit for the small gas fractions considered here. Although 
a 'steady' flow is being considered we are assuming timescales in which there is 
negligible dissolution of the gas. Then use of (3.5) in (3.2) and (3.3) yields 

(1 - P)UH = (1  - Pl)VO(h - 4, (3.6) 

(3.7) [Pl(l - p>u2 + P - PI] H = PI(1 - Pl)V,2(h + 4. 

3.3. State equation 
To evaluate substantial pressure changes it is desirable to choose a suitable pressure- 
density relation, or equation of state, for the mixture. This is similar to the approach 
used in gas dynamics. When considering water with a volume fraction of air P I ,  we 
need to decide whether the air is contained inside very small bubbles that change 
volume in an isothermal manner or larger bubbles that behave adiabatically. A 
unifying approach, to take account of limited heat flow, is to assume that the gas 
changes volume according to the polytropic law 

Pgpg" = constant, (3.8) 
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with the polytropic index ic given intermediate values between IC = 1 (isothermal 
behaviour) and IC = y (adiabatic behaviour), where y is the ratio of constant-pressure 
and constant-volume specific heats of the gas; y 2: 1.4 for air. For the time being we 
shall assume that ic N_ y. The r6le of the value of ic is addressed in 94.4. 

To derive a state equation for a compressible air-water mixture, consider a given 
mass of mixture occupying an initial volume, Y1, at reference pressure PI .  This 
volume contains a fraction P1.Y-l of gas, and a fraction ( 1  - P 1 ) Y l  of liquid. At 
another ambient pressure, P ,  the mixture occupies a different volume, Y ,  but its mass 
is preserved ; therefore, 

where p1 is the density of the mixture when the pressure is P1 and p its density when 
the pressure is P .  As stated earlier we take the liquid to be incompressible and the gas 
to change volume polytropically. Thus, the liquid volume is unchanged, but the gas 
now has volume P1Y1(P1/P)"", according to (3.8). Hence, the new volume occupied 
by the mixture is 

P l y . , =  P Y ,  (3.9) 

Upon substituting (3.9) in (3.10), we arrive at the equation of state 

-- 
P PI P1 

(3.10) 

(3.11) 

In deriving (3.11) the surface tension o is neglected, whence the pressure in the gas 
bubbles and in the surrounding liquid are considered equal and represent the actual 
pressure in the mixture. The especially violent flows considered here have sufficiently 
high pressures compared with the Laplace pressure, 2o/&, that neglecting surface 
tension is a realistic approximation. 

To simplify (3.11) a new variable, 
6 = 1 - -  P1 

P '  
(3.12) 

is introduced. Upon substituting (3.12) in (3.11) we get a compact expression for the 
equation of state 

P 
- = 
p1 P1-6 

(3.13) 

which is useful in Bernoulli's equation. This equation is implicitly contained in van 
Wijngaarden (1972). 

3.4. Bernoulli's equation 
A compressible fluid in a steady inviscid flow satisfies Bernoulli's equation 

/' $ + 542 = constant, (3.14) 

where q is the magnitude of the velocity. Integration of the first term in the left-hand 
side of (3.14) yields, using (3.13), 

dP 
ic-1 ic-1 

(3.15) 
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Note that (3.15) is singular when K = 1, which corresponds to isothermal behaviour 
of the gas. For completeness isothermal expressions are given in the Appendix, but 
we continue in the following with the assumption that K # 1. 

For subsequent algebraic convenience equation (3.15) is rewritten in the form 

(1 - p ) ,  (3.16) 
K 

PI ti-1 K-1 pi 

where p is defined from the equation of state (3.13) as 

(3.17) 

In evaluating (3.16) and (3.17) we have neglected the gas density compared to the 
liquid density (see equation (3.5)) to be consistent with the mass and momentum 
conservation equations (3.6) and (3.7). 

3.5. Dimensionless equations 
The natural velocity scaling in a compressible flow is Mach scaling. However the 
aim of this paper is to appreciate compressibility effects in violent flows. This is 
achieved most directly by comparison with the incompressible solution. Consequently 
our choice is to normalize all velocities with the incoming jet velocity V1 and the 
pressures with V:. The height of the container H is the natural length scale. These 
choices are identical to those adopted in PK. We use small letters for dimensionless 
quantities (with the exceptions that d, h and densities are dimensional); these are 

(3.18) 

The set of equations now consists of the non-dimensional kinematic condition (3.la), 
mass conservation (3.6), momentum flux balance (3.7), Bernoulli's equation (3.14) 
applied between the incoming jet and the filled portion of the container making use 
of (3.161, and the state equation (3.17): 

v - u = l ,  (3.19~) 
(3.19b) 
(3.194 

>c = d / H ,  k 2  = h / H ,  u = U / V i ,  v = V"/Vl, 

P1 = PI/ (+PIVl?), P = P /  ( f p l v : )  3 Prn = Pm/ ($PlV?).  

(1 - B ) u  = (1 - P I )  ( k 2  - X) 0, 

2(1 - P)u2 + P - P I  = 2(1 - PI) ( k 2  + X) v2, 

(3.19e) 

A further equation is needed to get the maximum pressure p m  at the stagnation point. 
This is obtained with Bernoulli's theorem and the state equation applied between the 
stagnation point and the incoming jet: 

K 
P m - P l + ( - )  (EL) [ 1-  (37 - = v2. (3.19f 1 

1 - K  1-p1 

The set of equations (3.19) is solved for x, B, u, 0, p ,  and p m  once the inflow 
parameters, i.e. k ,  PI, P I ,  and V i ,  are prescribed. A Newton iteration initialized with 
the incompressible solution plus J initialized as PI  is sufficient for that purpose. 
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3.6. Approximate solution 
As well as the small parameter p g / p ~  which we have already used, there are two 
further small parameters in this problem: the clearance of the incoming flow 

E. = ( H  - h ) / H  = 1 - k 2 ,  (3.20) 

and the volume fraction of air bubbles fll. These enable approximate solutions to be 
found which give some insight into the cushioning effect of the entrained air. 

First, we consider the approximate solution to the incompressible flow to clarify the 
subsequent compressible analysis. Although for violent examples the incompressible 
solution (2.1) indicates that 1 - k is the relevant small parameter, we use e as the 
small parameter for algebraic simplicity. The variables u, v ,  p - p1 are all O(l/c) 
whereas x is O(e2). The relative velocity condition, v - u = 1, permits simplification 
of the incompressible Bernoulli's equation : 

(3.21) p - p 1 = v  - u  = v + u .  2 2  

The mass and momentum conservation equations can also be simplified to give 

v - u  = U ( E + X )  = 1, (3.22) 

(3.23) v + u  = 2v ( € - X )  = 2v - 1, 
respectively, where the right-hand side of (3.23) follows from the relative velocity 
condition. 

For €41 it is clear that even for a first approximation one must include the second- 
order terms or the effect of the input flow V1, corresponding to the the right-hand side 
of (3.22), does not appear. Further exact algebra leads to quadratic equations in u, u 
or x, but in (3.22) x can be neglected to give the first approximation v = 1/e, which 
is consistent with the leading-order terms in (3.23). Thus, as may be seen from PK, to 
the first order in E. the filled pressure is the same for both the filling flow with a small 
return jet, PK equation (8), and the case without return jet that includes turbulent 
dissipation, PK equation (14). We also note that to find x the next approximation to 
v is necessary.? 

We now return to the compressible flow. The set of equations to be approximated 
is (3.19). Upon using (3.19~) and rearranging terms, (3.19b) becomes 

2 

(3.24) 

similar to (3.22). Using (3.19d) to eliminate the pressure difference p - p1 and looking 
for similarity to (3.23), equation (3.19~) becomes 

2v2 
2v - 1 = - [p* - p + f - pl(r - x) - XI 

a 

(3.25) 
2 - a  

a 

where 

(3.26) 

t The next approximation has solution u = e-l(l - + O(c2)), u = ~ - l ( l  - i c  + 0(2)), 
p -pi = 2e-'(1 - :e + O(e2)) ,  pm - p1 = ~ ~ ~ ( 1  - $6 + 0(c2)), x = $6' + O(e3) ,  consistent with the 
exact solutions of PK. 



The cjfect ojentruined air in violent water wave impacts 385 

To evaluate leading-order terms in (3.25) we need an order of magnitude for p. This 
is obtained from the state equation (3.19e), from which we infer that 

p = 0 ( p / p , )  = 0 (€1'"). (3.27) 

Thus, we deduce that a = 1 + O(f l1d'" ,p?) .  Correct to first order, either (3.25) or 
(3.24) give the same approximation : 

(3.28) 

Using (3.27) one may further approximate 
1 

U =  
6 + fl1 + O(fl1f''")' 

(3.29) 

At this level of approximation we are effectively assuming that air is of negligible 
volume at high pressure since ,u< 1 when 6 is small enough, The filling and maximum 
pressures are, to the same level of approximation, 

(3.30) 

This first-order solution clearly shows how the gas fraction p acts to cushion the 
pressures, with the maximum pressure being cushioned as the square of the filling 
pressure. Futher, the absence of K shows that only the volume change is significant 
in this approximation. 

The next approximation is needed to find x. Note however that the algebra becomes 
difficult since nonlinear terms of 0(plc1'") must be kept in the next approximation, 
and this is taken no further here. Approximate first-order results are compared to 
exact numerical calculations in 44.3. 

4. Results 
4.1. Prescription of the injow 

There are two kinds of parameters defining the incoming flow. First E determines the 
violence of the flow. This is an incompressible parameter as it is defined independently 
of the air content. There are three other parameters driving the compressibility of the 
incoming mixture. These are the atmospheric or equilibrium pressure PI, the velocity 
V,, and the air fraction pl. We choose a constant atmospheric pressure PI  = 1 bar 
so that only V I  and 01 are left free. The maximum value used for p1 is 0.10 since 
a number of our assumptions become poor for non-dilute dispersions. The range of 
values for the incoming velocity VI remains to be determined. For this purpose we 
note that the three parameters P1, V1, and fll uniquely define the speed of sound in 
the bubbly mixture. Small-amplitude disturbances in a bubbly mixture travel at a 
speed (e.g. Hsieh & Plesset 1961) 

This quantity appears naturally in Bernoulli's equation but was not chosen to scale 
velocities in (3.19) for reasons explained in $3.5. Expression (4.1) is now useful to 
choose the range of Vl. With p1 = 0.10 and P1 = 1 bar, the minimum sound speed 
in the mixture is C1 = 33 ms-'. In the following we choose values of V1 between 1 
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and 10 ms-l. In using this range of velocity the incoming jet can be viewed as due 
to a water wave whose height varies between a few centimetres (typical of small-scale 
experiments in the laboratory) and a few metres (typical of a field situation). In this 
parameter range the incoming Mach number MI = Vl/Cl seen in the fixed frame of 
reference is subsonic. Therefore the deceleration of the fluid between the incoming 
jet and the filled portion of the container occurs without shock formation. However 
the filling-velocity Mach number (& = V0/Cl) seen in the moving frame can be 
supersonic because U is much larger than V1 in sufficiently violent flows. In the most 
severe cases we found A between 1.2 and 2. 

The return jet may be supersonic in the reference frame of the container for 
significantly less violent flows, but it seems unlikely that this would of itself cause 
shock waves in the transonic flow. For supersonic advance of the filled region, relative 
to the incoming flow, it is clear that a smooth flow such as described in figure 1 is 
not possible. Shock formation is likely and return flow is unlikely. Thus the overall 
flow behaviour is dissipative and the pressure in the filled portion can be found from 
mass and momentum conservation, as at the end of $3 in PK. The results for the 
background pressure differ very little from those calculated from equations (3.19), as 
may be deduced from the approximate solution in $3.6. Whenever necessary those 
flows which are supersonic are indicated by using a broken line in the figures hereafter. 
The pressure maximum is assumed to be absent and is not shown. The absence of 
a pressure peak implies a significant reduction in force: but see $6 for some further 
discussion related to wave impact. 

4.2. Influence of the violence of t h e j o w  
The results presented here are for air changing volume adiabatically, IC = y .  They are 
presented as 'compressibility reduction factors'. For example, figure 2(a) shows the 
background pressure p(p1) that develops in the filled portion of the container as a 
function of PI. The pressure has been normalized with the pressure p(p1  = 0) = p(') 
of the corresponding incompressible flow, i.e. the ratio ~ ( p ' ) / p ( ~ )  is plotted. Four 
curves are plotted, each one corresponding to a different clearance, 6 .  The velocity 
of the incoming jet is here Vl = 8 ms-'. There is little compressible effect on the 
pressure p when the motion is not very violent, i.e. for E not so small. As one should 
expect, the compressibility effects are more prominent in more severe flows. When 
e = 0.19, p is decreased by 15% for 5% volume fraction of air in the incoming flow. 
In a more extreme case, E = 0.10, compressibility reduces p by 25% for the same 
value of PI. The cushioning effect of air is even stronger as regards the maximum 
pressure p m  at the stagnation point. With /I1 = 0.05 the corresponding values of pm 
when E = 0.19 and 0.10 are decreased by 20% and 50%, respectively. The fact that 
the maximum pressure is reduced more than the background pressure in severe flows 
is clearly demonstrated in the approximate solution (3.30). 

Notice that the discontinuity in filling pressure where A becomes supersonic is 
small. This is consistent with the approximate solution which predicts that results 
with or without a return jet are the same to first order (see $83.6 and 4.3 hereafter). 
Another point worth mentioning is that A!' becomes supersonic for very small values 
of air fraction when the flow is especially violent. 

Another way to vary the violence of the flow is to change the inflow Vl, keeping E 

fixed. Results are presented in figures 3(a) and 3(b) for the fixed value E = 0.10. These 
figures are particularly illustrative since they show that the pressures are not cushioned 
at lower velocity (i.e. in small-scale flows) whereas they are significantly cushioned 
at the higher velocities (i.e. in large-scale flows). These results are better understood 
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FIGURE 2. Pressure reduction factors as a function of PI ,  V,  = 8 m s-' : (a) background pressure 
p and ( h )  maximum pressure p m ;  dashed lines indicate where the 'filling' velocity Mach number 
A! = Vo/C, becomes supersonic. 

when considering the inflow Mach Number dYl .  For the slow inflow in figures 3(a)  
and 3(b) the maximum value of A I ,  occurring for p = 0.10, is 0.05 whereas for 
the fast inflow reaches 0.20. The reader familiar with compressible flows may be 
astonished to find pronounced compressibility effects in flows with moderate incoming 
Mach numbers. For instance the air flow in a convergent-divergent pipe is often 
considered incompressible for Mach numbers as high as 0.30. However it must be 
kept in mind that the flows considered here are violent with a wide range of velocities. 
This is the reason why the pressures are decreased so much even at moderate Mach 
numbers. 

4.3. Approximate results 
Examples of background and maximum pressure reduction factors computed exactly 
are plotted in figures 4(a) and 4(b) together with the corresponding approximate 
solution presented in 53.6. The incoming velocity is here Vl = 10 ms-'. Curves here 
are not interrupted when A > 1 to allow comparison on the whole range of air 
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FIGURE 3. Pressure reduction factors as a function of 81 for various inflows V ,  and e = 0.10: 
(a) background pressure p and (b)  maximum pressure p m ;  dashed lines indicate where the 'filling' 
velocity Mach number A = Vo/Cl becomes supersonic. 

volume fraction. Figure 4(a) is for a violent flow where E = 0.05. Results compare 
reasonably well in this case. Figure 4(b) is for the same incoming velocity but a less 
violent flow where e = 0.19. The results do not compare so nicely in that case because 
E is not small enough. Note that the approximate reduction factors can be larger than 
1 because these have been normalized with the exact results for the incompressible 
pressures. This choice allows us to see the error due to the approximation for small 
air content. We can estimate the error involved in the approximate solution. For 
small air content we deduce from the incompressible solution correct to O(e2) that 
the error in p - p1 is of order 3e/4. This corresponds to errors of 4% and 15% 
when e equals 0.05 and 0.19, respectively. When the air content is larger the error is 
0(/31e"~ +PIE). For = 0.10, these errors are found to be 0.6% and 5% when e 
equals 0.05 and 0.19, respectively. These order of magnitudes correspond roughly to 
the differences seen in figure 4. The approximate solution is therefore an efficient way 
to get a rough estimate of the cushioning effect in practical applications. 
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FIGURE 4. Approximate and exact solutions for the background and maximum pressure reduction 
factors: (a)  e = 0.05, Vl = 10 ms-' (b),  e = 0.19, V,  = 10 ms-'; - , approximate background 
pressure; - - - - , exact background pressure; ~ , approximate maximum pressure; - - -, exact 
maximum pressure. Curves here are not interrupted when & > 1 to allow comparison on the whole 
range of air volume fraction. 

4.4. InJuence of the polytropic index K 

The question of the influence of the polytropic index K has been left unanswered in 
$3. The radius of a typical bubble is in the range 0.1 to 1 mm either in breaking waves 
near the shore (Leighton 1994, p. 215) or during artificial injection of air in a water 
column (Scott 1975). It is not clear whether adiabatic or isothermal compression 
should dominate in this size range. We have therefore studied the sensitivity of 
the results to the value of ti. Results presented here are €or the violent flow where 
c = 0.10 and an incoming jet velocity V,  = 8 ms-'. Nonetheless similar results 
hold for all the flows we have examined. Figure 5 portrays the maximum-pressure 
reduction factor for five different values of K ,  namely ti = 1 (isothermal), 1.1, 1.2, 
1.3, and y (adiabatic). In general, there is very little difference between each plot 
in figure 5. The maximum discrepancy in pm is only 0.02 between adiabatic and 
isothermal compression. Note that the lowest maximum-pressure reduction factor is 
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obtained for isothermal compression. There is even less discrepancy in the results for 
the background pressure (not shown here). However, K does have a significant effect 
on the velocity of sound, so the supersonic regime occurs for less violent flows as K 

is reduced. This implies that exceptionally small bubbles, which correspond to low IC, 
may have a greater effect in limiting maximum pressures. 

The approximate solution presented in $3.6 helps us understand why results depend 
little on the value of the polytropic index. To first order, the approximate solution 
(3.30) for the pressure reductions is independent of K .  This is an expected feature 
since (3.30) just assumes that air is eliminated at high pressure.? It is helpful that the 
pressure reductions depend little on IC. This allows an accurate computation of the 
cushioning effect whatever the actual value of K ,  a quantity rather difficult to estimate 
in practice. For bubbles in the size range considered here it is likely that an adiabatic 
compression in the first place would be followed by a decrease in K ,  resulting in a 
final isothermal equilibrium (with the proviso that the liquid be viewed as a large 
isothermal reservoir). Owing to the small sensitivity of the results to a constant value 
of JC, we believe that taking into account this unsteady heat transfer would have little 
effect on the pressure reductions. Watanabe & Prosperetti (1994) point out that for 
unsteady pressure fields a simple equation of state is inappropriate. This is due to the 
forcing of bubble oscillations. Whether or not this is important here is not clear, but 
the insensitivity to the details of the equation of state demonstrated in figure 5 gives 
us some confidence in our results. 

The lack of sensitivity to the precise equation of state is also reassuring when 
considering the effects of bubble motion relative to the water. Since bubbles have no 
significant inertia other than their added mass, they have a very strong response to 
pressure gradients. This can lead to fewer bubbles in the regions of highest pressure 
as preliminary computations of bubble trajectories demonstrate. However, since we 
see that in these regions the bubbles have a nearly negligible volume fraction, bubble 
migration can be expected to have little effect on these results. Aspects of bubble 
migration are being studied further. 

5. Discussion and application to flip-through 
We have emphasized in this paper how a small fraction of air dispersed as bubbles in 

water can significantly lower the high pressures encountered in violent confined flows. 
Such differences between compressible and incompressible flows are not surprising. 
Even a small fraction of air dramatically lowers the sound speed. Therefore Mach 
numbers based on this sound speed can reach significant values in large-scale flows. 
The r81e of compressibility as described here is applicable to substantial changes of 
pressure whereas sound speed relates to small or moderate perturbations. Another 
point of especial interest is that these results are for an unsteady flow. Although the 
analysis makes use of a frame of reference in which the flow is steady the velocity 
of the reference frame, U ,  depends on the incoming air content. The approximate 
solution of $3.6 sheds light on this mechanism. Equation (3.29) shows that V, and U 
are reduced as the air content increases. This reduction in the velocity of filling is a 
consequence of the effective volume of the fluid being reduced at high pressure. 

The simplicity of these results suggests that they may be suitable for application 

The approximate solution for exactly isothermal compression ( K  = 1) is identical to (3.30). 
This is due to the fact that the first-order expansion in the isothermal Bernoulli’s equation (A2) is 
identical to the first-order expansion of (3.19d) 
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in other circumstances, the flip-through type of wave impact being the most directly 
relevant. Figure 6 shows a pressure distribution on the 'upper' wall for a filling flow, 
using the complete two-dimensional incompressible solution found by PK, together 
with a pressure distribution on a vertical wall due to a flip-through wave impact 
computed with a full potential flow description (Cooker & Peregrine (1996)). Similar 
quantities have been chosen to scale both length and pressure. The distance x along 
the wall has been normalized with the distance between the point of maximum 
pressure and the point on the free surface with tangent perpendicular to the wall. The 
pressure for the flip-through has been normalized using density and the difference 
between the velocity of the jet and the velocity of the maximum pressure point. For 
the filling flow the pressure has been normalized with the jet velocity V in the moving 
frame of reference. The parameter k for the incompressible filling flow was chosen to 
match the ratio R = p; ) /p ( ' )  between the maximum and background pressure for the 
flip-through. Here the background pressure is taken to be that near the bed (x N -80, 
in figure 6). From equations (2.147) the appropriate value of k is given by 

In the example chosen for figure 6 the background pressure is about one sixth of the 
maximum pressure and so k = 0.96. Given the considerable differences in the two 
flow fields, one in a narrow channel, the other in a quarter-plane, the similarity of 
the pressure distributions in figure 6 is very encouraging. Both have the same general 
trend with the two major discrepancies being that in the flip-through profile shown 
the pressure maximum is 25% higher and the pressure reaches its background value 
more quickly. Other computations of flip-through waves have provided dimensionless 
maximum pressures between 0.8 and 1.3. In a filling flow the pressure relaxes to 
its background value more slowly because the background pressure is asymptotically 
reached at infinity while the flip-through is in a less confined domain. 

We now proceed to explain how our results might be used in practice. The 
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- Filling flow 

Flip-through 

reductions in pressure due to entrained air shown in figure 2 are not uniform. The 
peak is reduced more than the 'background' pressure. Although, at first, this appears 
to make it difficult to apply our results, the similarities in figure 6 and consideration 
of how such values are used gives a different view. 

Many, if not all, applications of wave impact forces in design calculations rely on 
a simplified pressure distribution, e.g. that of Goda (1974). These are described by 
few parameters, which are easy to modify in line with pressure variations of the type 
shown in figure 2. 

The engineer is faced with the problem of scaling pressures measured in small- 
scale laboratory experiments to larger scales in the field. Suppose that we know the 
dimensional values of the background and maximum incompressible pressures, P 
and P,, quantities which are accessible from pressure gauges fitted on the wall of 
a laboratory tank. Computation of the pressure reductions due to compressibility 
requires knowledge of a typical incoming velocity Vi in the large-scale flow. For 
instance Vl may be inferred from knowledge of the wave climate. For our purpose 
we choose V1 = 8 ms-'. Following the method outlined in 93 further diagrams of the 
exact results for adiabatic compression are given in figures 7(a) and 7(b) to assist. In 
these the incompressible pressure, p(')  or pk) ,  is this time used as the input variable 
and each curve corresponds to a unique value of PI. 

However, these pressures are normalized with a reference pressure PR, say. To use 
figure 7, PR must be found. If the approach velocity of the wave in the small-scale 
experiment, say Vsl, is known, then we have PR = iplVA. Alternatively, if the speed 
V,, is not known from experiments the reference pressure PR may be inferred from 
the dimensional values of the background and maximum incompressible pressures, P 
and P,. As these are measured in a small-scale experiment, where little compressibility 
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effect is expected, we may use the incompressible solution of PK. When k is eliminated 
from the pair of equations (2.la,b),  and the dimensional pressures are inserted the 
following equation is found for PR: 

(5.2) P i  - 2(2Pm - P ) P ,  + P 2  = 0. 

Solving the quadratic and choosing the value of PR which is less than the other two 
pressures yields 

The dimensionless values for p = P / P R  and pm = Pm/PR are then available for using 
figures 7(a) and 7(b)  to give an estimate of the pressure reduction factors due to 
entrained air in water wave impact. 

Finally we may take a numerical example to illustrate the theory. Typical pressures 
measured in the laboratory by Hattori & Arami (1992) are Pm = 300 cm of water, 
and P = 60 cm of water. Thus (5.3) gives PR = 3.3 cm of water and the dimensionless 
pressures are p = 18, pm = 90. For a prototype flow with I/, = 8 ms-’ and air content 
fil = 0.05, figure 7 tells us that the background pressure is reduced by 25%, whereas 
the maximum pressure is reduced by 45%. 

PR = 2Pm - P - 2[Pm(Pm - P ) ] ” 2 .  (5.3) 

6. Supersonic flow at impact 
when A‘ > 1, are indicated in 

figure 7(a) by dashed lines, and in figure 7(b)  by the premature termination of the 
lines. Once A! > 1 the flow pattern is no longer as shown in figure 1, and at wave 
impact a flip-through with rising jet is unlikely to occur. For the filling flow we have 
been unable to deduce any viable steady flow pattern when the filled region advances 
onto the incoming flow at supersonic speed. However, for a flip-through type of wave 
impact the general outline of a transonic flow pattern is more readily deduced. This 
is because the rising jet has strong similarities to the backward jet that occurs when 
two plane jets meet symmetrically at an oblique angle (Birkhoff et al. 1948). The 
corresponding conical flow leads to the Munroe jet that has been used in armour- 
piercing munitions. The two-dimensional problem of interest here has been studied 
by Walsh, Shreffler & Willig (1953), and may be extended to the wave impact case. 

Consider the flow at a wall when a wave causes a flip-through. As the front of the 
wave comes close to the wall the point where the free surface meets the wall starts 
to move with violent acceleration, and for incompressible flow the highest pressures 
occur just as a thin high-speed jet forms. Now, if the contact-point velocity exceeds 
the sonic speed in the bubbly mixture no jet can form. Consideration of Walsh et 
al.’s solution shows that a shock forms at the contact point, extending into the fluid 
at the angle necessary to deflect the flow of the undisturbed face of the wave so that 
it becomes parallel to the wall. That is the flow behind the shock is made up of 
water that was in the face of the wave but is now rising up the wall at supersonic 
speed. Sketches of a flip-through and the corresponding compressible flow are shown 
in figure 8. The local configuration at the contact point is governed at any instant 
by the angle between the wall and the front face of the wave and the velocity of 
motion of the contact point. This is in fact the reverse of the transition that occurs 
from supersonic to subsonic flows when a liquid mass makes a direct impact with a 
solid, e.g. see Korobkin (1996) for a discussion. The shape of the shock will reflect 
the changing Mach number of the contact point and two possibilities for accelerating 
contact points are sketched in figure 8. 

In the previous section supersonic flows, i.e. 
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The pressure rise at the shock can be deduced from the conservation of mass and 
momentum, and the fluid's equation of state. We do not follow through the analysis 
here, as in Walsh et al. (1953), for three reasons. Firstly, the angle between the free 
surface and the contact point is likely to change markedly. Secondly, the solution 
fails if the wave surface becomes parallel to the wall. Finally, bubbly fluids are likely 
to have significant shock structure, e.g see Watanabe & Prosperetti (1994) for a recent 
discussion. On the other hand, the configuration is worthy of deeper study since 
in the cases considered by Walsh et al. (1953), i.e. sheets of aluminium, iron and 
lead, the maximum pressures for a given velocity normal to their surfaces, i.e. before 
consideration of velocities relative to the contact point, occurred at the critical angle 
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FIGURE 8. Sketches of wave impacts: (a) flip-through; ( b )  and ( c )  two different supersonic impacts 
with small and large contact point accelerations, respectively. 

when shock formation only just occurred, whereas the minimum overpressure was 
that of the direct impact. Perhaps this is related to the disappearance of the maximum 
‘stagnation point’ pressure. These topics are left for future study. 

7. Conclusion 
This paper provides a method to estimate the cushioning effect of air in violent 

free-surface flows. Expressions are formally derived for the filling flow of PK and 
results extrapolated to the flip-through wave impact. In using this approach it should 
be borne in mind that our arguments are based on a flow where air is dispersed as 
small bubbles rather than one that traps a large pocket of air. It is demonstrated that 
the background and maximum pressure reductions can be very large in spite of small 
volume fraction of air (PI < 0.10). The pressures decrease with increasing wave Mach 
number based on the sound speed in the air-water mixture and with the violence of 
the flow. Small-scale waves (low incoming velocity) show no significant cushioning 
of the pressures. Large-scale waves (fast incoming velocity) may have the maximum 
pressure they induce on a wall reduced by almost an order of magnitude, perhaps 
even more so if supersonic velocities are attained. 

An approximate solution is derived for violent flows assuming that air is eliminated 
at high pressure. This simple argument shows that the maximum pressure is reduced 
as the square of the background pressure which itself is reduced because the reduced 
volume of the compressed mixture gives a lower filling velocity U .  There is good 
agreement between the approximate solution and the exact numerical solution. 

In practical applications it may be of primary importance to get a good estimate of 
P I ,  the volume fraction of entrained air, to compare our estimates with experiments. 
Practically no field measurements are available, but work at Plymouth University 
is in progress making such measurements on a large breakwater. To conclude, the 
arguments presented here are likely to be relevant to other types of flows where 
large pressures occur that could be cushioned in the same way. The problem of ship 
slamming seems particularly pertinent. 
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Appendix. Bernoulli's equation for isothermal change of volume 
The integral in Bernoulli's equation in $3 has been evaluated for non-isothermal 

change of volume of the gas (ti # 1). The corresponding calculation when ti = 1 
induces a logarithm. The dimensional result reads 

D. H .  Peregrine and L. Thais 

Thus the dimensionless Bernoulli's equation applied between the incoming flow and 
the filled portion of the container is 

2 2  PlPl 
1 -P1 

P - PI + ~ In (p/pl) = v - u . 

The additional equation necessary to compute the maximum pressure in the container 
is 

PlPl 

1 - P 1  
P m  - P I  + __ In ( p m / p l )  = v 2  

For isothermal change of volume equations (3.19d) and (3.19j) are to be replaced by 
(A2) and (A3), respectively, and ti must be set equal to 1 in (3.19e). 
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